



D. Murcho, F. Baptista*, L.L. Silva e J.R. Silva

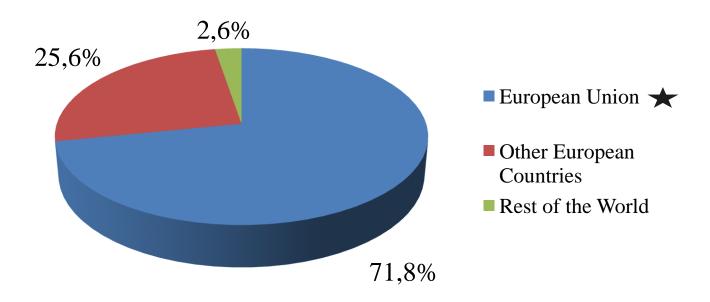
fb@uevora.pt

Summary

- 1. TESLA objectives
- 2. Olive oil mills energy consumption
- 3. Best practices for energy efficiency improvements
- 4. Success cases
- 5. Final considerations

OBJECTIVES of TESLA

- increase access of agro-industries to energy efficiency measures
- to develop a management methodology for the agro-industry sector
- to promote investment in EE and renewable energies



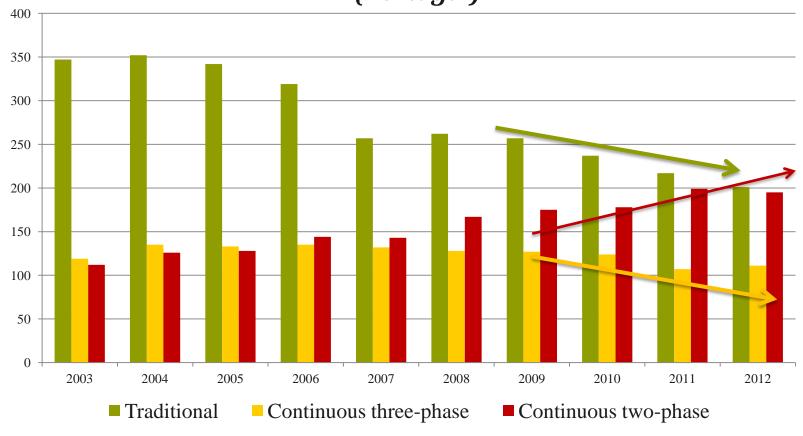
Olive oil mills energy consumption

Near 95% of olive grove production is in the Mediterranean region.

Produção Mundial de Azeite (2010/11)

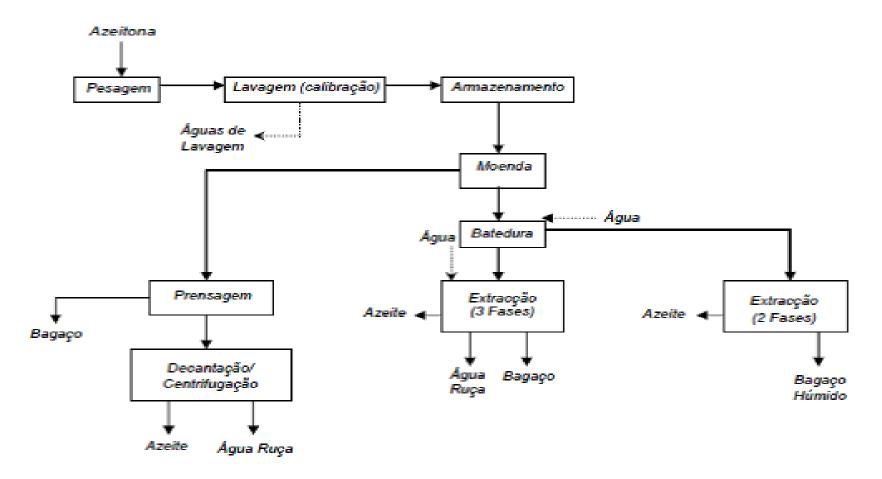
Elaborated with data from IOC (2012)

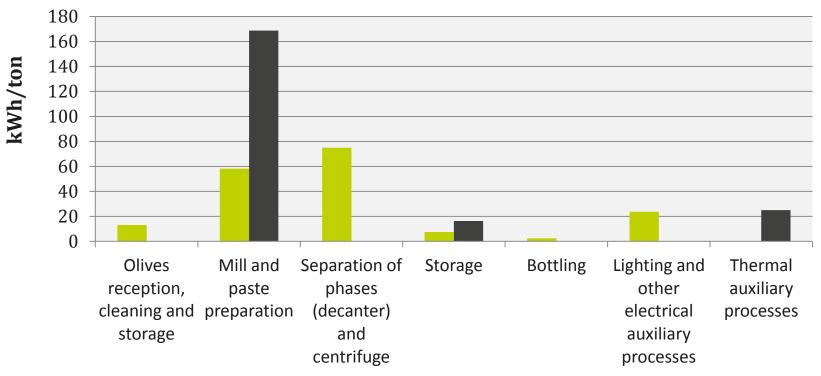
★ Spain, Italy, France, Greece and Portugal


Characteristics of the Olive Oil Sector

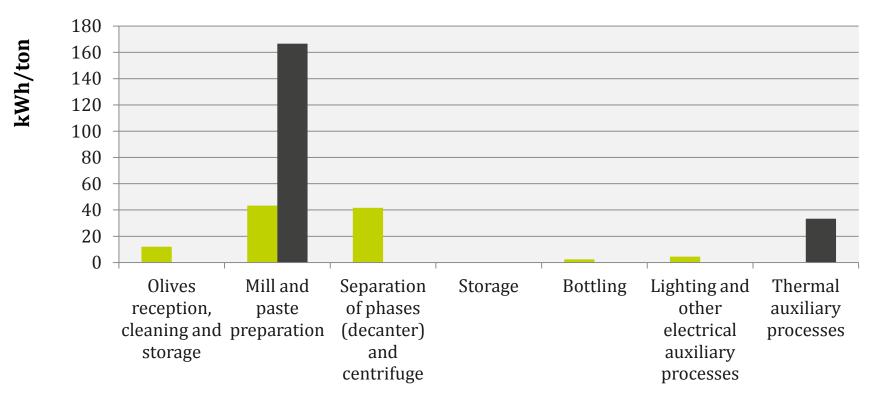
Olive Oil Sector - 2011	Portugal	Spain	France	Italy
Area olive groves for oil (ha)	338.048	2.584.564	55.000	1.144.400
Olives used for oil (ton)	510.733	7.820.000	16.740	3.122.500
Average productivity (kg olives/ha)	1.511	3.026	1.000	2.900
Olive mills in activity (nº)	527	1.750	254	4.809
Olive oil produced (ton)	76.200	1.651.000	3.200	464.900
Productivity (kg olive oil/ha)	227	639	58	406
Olive oil/Olives (%)	15	21	19	15
Olive oil consumption (ton)	78.000	574.000	112.000	610.000
Olive oil consumption per capita (kg)	7,4	12,3	1,7	10,3
Resident population	10.557.560	46.815.916	64.612.939	59.394.000

Source: INE (2012); IOC (2012); INEA (2012) and AFIDOL

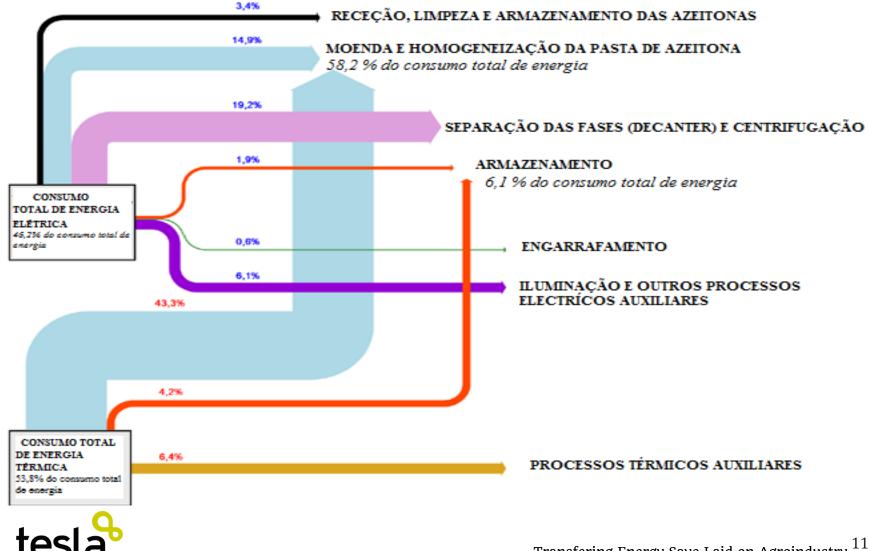

Number of olive mills with different olive oil extraction systems (Portugal)


Source: INE (2011)

Olive oil extraction processes


Energy consumption for olive oil production (example for a olive oil mill producing 1.600 ton of olive oil per year)

Electrical energy consumption (kWh/ton) Thermal energy consumption (kWh/ton)


Energy consumption for olive oil production (example for a olive oil mill producing 300 ton of olive oil per year)

■ Electrical energy consumption (kWh/ton)
■ Thermal energy consumption (kWh/ton)

Energy Balance for the standard production industry of 1.600 tons of olive oil per year

Best practices for improving energy efficiency

Energy Efficiency Sustainable production

- Buildings
- General equipment
- Specific equipment
- Efficient management

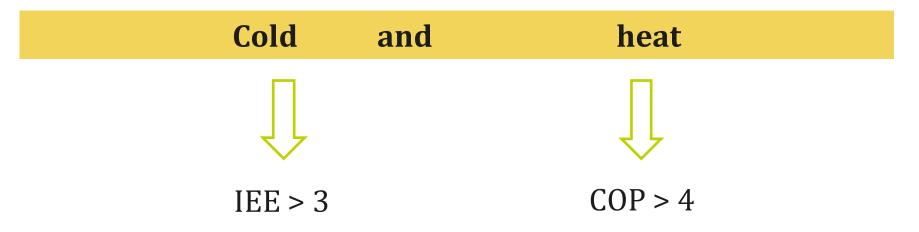
Building techniques

Energy Efficient Design

- EED has been proven to be the most cost-efficient and attractive way to improve energy efficiency in industry achieving savings up to 20–30 % of total energy consumption.
- An important barrier against success is that manufacturers are conservative or unwilling to change a well-proven standard design and/or to update product guarantees, etc...

Design of natural ventilation systems

- Ventilation allows controlling air properties such as temperature, humidity and air quality without any electricity demand.
- In olive oil mills, p.e., it is important to control air conditions in the bottling area in order to avoid condensation on the bottles surface causing problems with labelling.
- Nat. ventilation saves between 13-44 kWh/m² annually (comparison with mechanical ventilation)


Materials for building industrial facilities

- Choosing more sustainable materials implies considering the environmental properties (select those that are abundant, non-toxic, have low embodied energy, and meet or exceed the regulations) and the physical properties.
- With good insulation and a suitable ventilation system, we can significantly decrease heat exchanges (losses or gains) and with that reduce air conditioning needs (cooling or heating).

Insulation of external walls : 33–60% energy savings (Balaras et al., 2007)

General equipment

Insulation of tubes transporting fluids

Potencial savings of 85% depending on the insulation level

Motors and pumps with high efficiciency

Design and motors control systems

Light

LED - reduction of the needed power up to 65%.

Specific equipment for olive oil mills

Biomass boilers

reduced from 46 €/MWh to 13 €/MWh

Installation of Listello - With the same energy consumption it is possible to increase olive oil production up to 35%.

Microwave radiation - Reduces the time (55 min to 30 min) during the malaxation of the olive paste to reach optimal temperature (28 ° C)

Decanting tanks - Reduction in water consumption and a decrease in liquid effluents from oil washing process. 100% of energy savings are possible. Needs larger areas.

Oleosim – similar to the previous but needs less area. Consumes approximately 96 % less energy than using vertical centrifuges.

Two-phase system allows reducing waste water to 0,33-0,35 m3/t of olive oil comparing with the 6-8 m³/t of olive oil for the three-phase system and 2-5 m3/t of olive oil for the traditional extraction method.

In addition to the water saving, energy saving is about 20%.

Energy management

ISO 50.001: International norm for energy management

Renewable energy

Solar – savings of 50 to 70% fucntion of the location

Geothermal – high investment and avalability

Cogeneration - olive oil mills sludge treatment: reductions in the

primary energy demand (16%) as well as in the CO2eq emission.

The main limitation of the combined heat and power (CHP) scheme

is the economic viability, since a high simultaneous utilization of

heat and power is required in most applications.

Management - Bottling

- Optimising packing line efficiency
- Use of in-line check-weights to prevent overfilling of packing

In general, a systems approach for energy reduction, includes elimination of unnecessary processes and upgrading inefficient equipment

Success Cases

Cooperativa Agrícola de Olivicultores do Cano

País: Portugal

Sector: Lagares

Medidas implementadas:

Alteração do sistema de extração, de 3 fases para 2 fases

- a) Substituição da máquina de lavagem;
- b) Substitução do moinho de martelos;
- c) Substituição da batedeira (passou de 1.000 kg/h de massa a 7.000 kg/h);
- d) Eliminação de uma das centrifugas
- e) Substituição da caldeira por outra de maior potência e capacidade

Cooperativa Agrícola de Olivicultores do Cano

País: Portugal

Sector: **Lagares**

Produto: Azeite

Produção: 344 ton (+156 ton)

Poupança Energética: 11.690 (1) kWh (60,35 kWh/ton)

Diminuição dos custos: 170 (1) €

Redução das emissões de CO2eq: 1⁽¹⁾ ton (23 kg CO2eq/ton)

Investimento: 333.000 €

Período de retorno: 8

(1) A vermelho, representa um aumento no valor total de energia consumida. No entanto, por tonelada de produto produzido, temos uma redução.

Redução energética, de custos e de emissões de CO2

S.C.A. Ntra. Sra. Del Carmen

País: Spain

Sector: Lagares

- a) Substituição dos motores por outros mais eficientes
- b) Optimização das operações do lagar
- c) Substituição da centrifuga vertical por um tanque de sedimentação
- d) Instalação do Oleosim
- e) Isolamento de tubos
- f) Instalação de um sistema fotovoltáico

S.C.A. Ntra. Sra. Del Carmen

País: Spain

Sector: **Lagares**

Produção: 4.500 ton

Poupança Energética total: 645.000 kWh (143 kWh/ton)

Diminuição dos custos: 86.000 €

Redução das emissões de CO2: 260 ton (58 kg CO2/ton)

Investimento: 1.000.000€

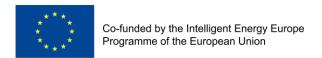
Período de retorno: 4,5 anos

Redução energética, de custos e de emissões de CO2

Final considerations

Introduction of new technologies/modification of production processes.

- to change from the 3 to 2 phases
- substitution of hold equipment by more efficient new ones
- Automation systems
- substitution of lamps
- use of more efficient motors
- Period maintenance practices
- biomass use
- Management practices, etc.



Fátima Baptista

fb@uevora.pt

